МИНОБРНАУКИ РОССИИ

«УТВЕРЖДАЮ»

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСиС» (НИТУ «МИСиС»)

Ленинский проспект, 4, Москва, 119049 Тел. (495)955-00-32; Факс: (499)236-21-05 http://www.misis.ru E-mail: kancela@misis.ru ОКПО 02066500 ОГРН 1027739439749

ИНН/КПП 7706019535/ 770601001

Ha №

Отзыв ведущей организации

Проректор по науке и инновациям,

д.т.н., проф.

Филонов М.Р.

» января 2019 г.

ОТЗЫВ ВЕДУЩЕЙ ОРГАНИЗАЦИИ

на диссертационную работу Анашкиной Наталии Евгеньевны "Экспериментальное обоснование механизма модифицирования физикохимических, структурных и технологических свойств алмазов и породообразующих минералов кимберлитов при нетепловом воздействии высоковольтных наносекундных импульсов ", представленной на соискание ученой степени кандидата технических наук по специальности 25.00.13 -«Обогащение полезных ископаемых»

Представленная на рассмотрение диссертационная работа состоит из введения, пяти глав, заключения, списка использованной литературы из 170 наименований и изложена на 180 страницах машинописного текста, включая 38 рисунков и 11 таблиц и приложений.

Актуальность диссертационной работы обусловлена необходимостью совершенствования технологии обогащения труднообогатимых руд алмазоносных кимберлитов на основе разработки ѝ внедрения новых способов интенсификации процессов дезинтеграции, вскрытия породообразующих минералов, селективного распознавания и выведения кристаллов алмазов при дроблении и измельчении, выявления новых разделительных признаков и увеличения контрастности физикохимических, механических, электрофизических и люминесцентных свойств алмазов и минералов породы.

диссертации Анашкиной Н.Е. впервые проведены комплексные экспериментальные исследования механизма воздействия наносекундных импульсов высокого напряжения на структурные, физико-химические, механические и технологические свойства природных минералов-диэлектриков — породообразующих минералов кимберлита (оливина, серпентина, кальцита) и кристаллов алмазов для обоснования эффективности применения импульсных энергетических воздействий в технологических процессах извлечения алмазов из кимберлитовых руд.

Оценка внутреннего единства полученных результатов

Диссертационная работа охватывает все основные вопросы поставленной научной задачи и соответствует критерию внутреннего единства, что подтверждается общей целенаправленностью работы, основной идейной линией, взаимосвязью научных результатов, положений и выводов.

Научная новизна и теоретическая значимость работы

Получены новые экспериментальные данные о влиянии мощных электромагнитных импульсов (МЭМИ) на комплекс структурных, механических, электрических, физико-химических и технологических свойств алмазов и породообразующих минералов кимберлитов, подтверждающие развиваемые в диссертации представления о механизме нетеплового воздействия наносекундных импульсов высокого напряжения на геоматериалы.

Впервые выявлены и экспериментально обоснованы механизмы изменения структурно-химических, механических, физико-химических и технологических свойств природных минералов-диэлектриков — алмаза, оливина, серпентина и кальцита из кимберлитов в результате воздействия МЭМИ. Основными из этих механизмов являются следующие:

- разупрочнение породообразующих минералов вследствие образования микроканалов электрического пробоя вблизи тонкодисперсных металлсодержащих включений (сульфидов, оксидов), разупорядочения структуры (деструкции) поверхностного слоя минералов в результате высоковольтной

поляризации минерального вещества и воздействия на минеральную поверхность активных продуктов излучения плазмы искрового разряда, вызывающее существенное уменьшение микротвердости минералов-диэлектриков;

- дисперсионное упрочнение алмазов вследствие образования новых дефектов типа В2 (плейтлетс) без глубокой структурной перестройки кристаллов, что, предположительно, вызывает повышение прочностных свойств алмазов и способствует большей сохранности ценных кристаллов при измельчении кимберлитов;
- контрастное (разнонаправленное) изменение электрических, физикохимических и технологических (флотационных) свойств алмазов и минералов породы, вызванное поглощением энергии импульсного электромагнитного излучения в процессе стадийных структурно-химических преобразований поверхности минералов;
- удаление с поверхности кристаллов алмаза гидрофильных минеральных пленок за счет предварительной обработки МЭМИ, вызывающей их деструкцию, и, как следствие, увеличение гидрофобных свойств алмазов.

Практическая значимость работы

Разработан оптимальный комплекс методов для исследования влияния МЭМИ на технологические свойства алмазов и породообразующих минералов кимберлитов. Обоснована перспективность применения МЭМИ для оптимизации технологии извлечения алмазов из кимберлитов. Установлены параметры МЭМИ, обеспечивающие наиболее эффективное извлечение алмазов и даны рекомендации по использованию электромагнитный импульсных воздействий в технологической схеме переработки алмазосодержащих кимберлитов трубки «Интернациональная» на ОФ № 3 МГОКа АК «АЛРОСА».

Обоснованность и достоверность результатов, научных положений, выводов и рекомендаций, представленных в работе, подтверждается

современных физико-химических использованием комплекса методов исследований, непротиворечивостью полученных результатов выводов; достижением высокой эффективности процессов дезинтеграции (разупрочнения) породообразующих минералов кимберлитов, электроимпульсного разрушения пленок на поверхности алмазов, контрастного структурноминеральных химического модифицирования свойств алмазов и минералов породы при нетепловом воздействии наносекундных импульсов высокого напряжения в интервале изменения установленных рациональных параметров МЭМИ; использованием методов математической статистики для обработки поученных экспериментальных данных.

Апробация и оформление работы

Содержание работы в полной мере отражено в автореферате и публикациях автора. По теме диссертационной работы опубликовано 35 научных работ, в том числе в рекомендованных ВАК РФ изданиях — 7. Материалы исследований многократно докладывались на различных международных и российских научнопрактических конференциях, конгрессах, совещаниях.

Автореферат диссертации в достаточной мере отражает содержание основное работы. Диссертация написана грамотным научно-техническим языком, составлена и оформлена в соответствии с требованиями ВАК и ГОСТ 7.1.11-2011 «Диссертация и автореферат диссертации», графические материалы оформлены с применением современных компьютерных программ.

Личный вклад автора заключается в проведении аналитического обзора научно-технической информации о методах, применяемых при обогащении алмазоносных кимберлитов, формировании эталонной коллекции минералов кимберлитов и алмазов, проведении кристаллохимической классификации природных технических алмазов и выполнении экспериментальных исследований по влиянию МЭМИ на структурно-химические, морфологические, физико-химические, механические, электрические, флотационные свойства алмазов и

породообразующих минералов кимберлитов, в анализе и обобщении полученных результатов.

Замечания

- Насколько существенно влияет исходный химический состав породообразующих минералов кимберлита оливина, серпентина и кальцита на изменение их технологических свойств в результате обработки МЭМИ? Не ясно, электрического как распределяется энергия разряда на поверхности полиминерального образца. Играет ли роль проводимость и влажность породы? Как влияет на эффективность обработки соотношение проводимостей алмаза и породных минералов?
- 2. Автор приводит и теоретически обосновывает в работе прогноз возможности эффективного применения метода электромагнитных импульсных воздействий в цикле переработки алмазосодержащих кимберлитов, однако данные исследования не апробированы в условиях технологического процесса.
- 3. Не ясно, что понимается под стадиями процесса структурно-химических преобразований поверхности породообразующих минералов кимберлитов и алмазов». Как стадии связаны c интенсивностью обработки? охарактеризованы изменения прочностных свойств алмаза после обработки. Возможно, стоило провести дополнительные исследования ПО сохранности кристаллов алмаза в результате импульсных воздействий. Меняется ли прозрачность, окраска кристаллов? Появляются ли трещины и деформации? Не ясно, что понимается под кристаллами со смешанными свойствами?
- 4. Чем обусловлен выбор продолжительности воздействия от 10 до 150 с, что происходит с исследуемыми минералами при обработке МЭМИ менее 10 с и более 150с?
- 5. В работе не приведены документальные подтверждения проведенных испытаний технологии электроимпульсной обработки.

Заключение

В целом указанные замечания не снижают ценности рассматриваемой диссертационной работы, имеющей научную новизну и практическую значимость. Полученные автором научные данные вносят вклад в изучение теоретических основ обогащения алмазосодержащего сырья. Диссертация представляет собой завершенное системное научное исследование и является научно-квалификационной работой, в которой решена задача теоретического обоснования эффективности применения электромагнитного импульсного воздействии для интенсификации процессов обогащения алмазосодержащих руд.

Диссертационная работа отвечает требованиям ВАК, предъявляемым к кандидатским диссертациям в соответствии с п.9 Положения о присуждении ученых степеней, а ее автор, Анашкина Наталья Евгеньевна, заслуживает присуждения ученой степени кандидата технических наук по специальности 25.00.13 – «Обогащение полезных ископаемых».

Диссертационная работа и положительный отзыв ведущей организации рассмотрены на заседании кафедры Обогащения и переработки полезных ископаемых и техногенного сырья (Протокол № 6, от 15 января 2019 г.)

Заведующий кафедрой «Обогащения и переработки полезных ископаемых и техногенного сырья» НИТУ МИСиС, к.т.н., доцент

Сведения о ведущей организации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МИСиС» (НИТУ «МИСиС»)

ССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ (НИТУ «МИСиС»)

Мешена Т.И. Юшина

Ленинский проспект, 4, Москва, 119049

Тел. (495)955-00-32; Факс: (499)236-21-05

http://www.misis.ru

E-mail: kancela@misis.ru

ОКПО 02066500 ОГРН 1027739439749 ИНН/КПП 7706019535/ 770601001

Список опубликованных научных трудов НИТУ «МИСиС»

№ π/π	Наименование работы	Форма работы	Выходные данные	Объем	Соавторы	
1 Научные труды						
1.1 Публикации в изданиях, индексируемых WoS/Scopus						
1	Расширение ресурсной базы марганецсодержащего сырья на основе использования руд окисленного типа в теплоэнергетике и производстве наноматериалов	Печатная статья	Горный журнал, № 12, 2014 г.	c. 70- 74	Юшина Т.И., Крылов И.О., Епихин А.Н., Строков А.А.	
2	Analysis of technologies and practice of limonite ore processing	Печатная статья	CIS Iron and Steel Review. 2015. T. 2015. № 10.	C. 4-8	Yushina T.I., Krylov I.O., Pak S.G., Petrov I.M.	
3	Flotation properties of additional collectors, foaming agents based on acetylenic alcohols	Печатная статья	Non-Ferrous Metals. 2015. № 2.	C. 3	Yushina T.I., Shchelkuno v S.A., Malishev O.A., Dunaeva V.N.	
4	Мировой рынок и технологии переработки редкоземельных металлов: современное состояние и перспективы	Печатная статья	Горный журнал. 2015. № 2.	C. 59-64.	Юшина Т.И., Петров И.М., Гришаев С.И., Черный С.А.	
5	Мировой рынок и технологии переработки редкоземельных металлов: современное состояние и перспективы (часть 2)	Печатная статья	Горный журнал. 2015. № 3.	C. 76- 82.	Юшина Т.И., Петров И.М., Гришаев С.И., Черный С.А.	

6	Вещественный состав и особенности обогащения и подготовки бедных и труднообогатимых железных руд с целью их использования в бездоменных технологиях получения чугуна «Ромелт»	Печатная статья	Горный журнал. 2015. № 12.	C. 14- 20.	Юшина Т.И., Крылов И.О., Валавин В.С., Дунаева В.Н.
7	Повышение извлекаемой ценности российских марганцевых руд путем их применения в топливно-энергетическом комплексе и наноиндустрии	Печатная статья	Горный журнал. 2015. № 11.	C. 4-7.	Юшина Т.И., Крылов И.О., Дунаева В.Н., Дидович Л.Я.
8	Анализ современного состояния добычи и переработки железных руд и железорудного сырья в Российской Федерации	Печатная статья	Горный журнал. 2015. № 1.	C. 41- 47.	Юшина Т.И., Петров И.М., Авдеев Г.И., Валавин В.С.
9	Technology of separation of carbon nanotubes from natural ferriferous manganese catalysts with the aid of agents made of acetylene alcohols	Печатная статья	CIS Iron and Steel Review. 2016. T. 12.	C. 4-8.	Yushina T.I., Krylov I.O., Popova K.S., Vinnikov V.A.
10	Flotation of carbonaceous material with reagents based on acetylene alcohols	Печатная статья	Eurasian Mining. 2016. № 2 (26).	C. 23- 28.	Yushina T.I., Popova K.S., Malyshev O.A., Shchelkuno v S.A.
11	Prospect of preliminary beneficiation use in the poor tungsten ores processing practice	Печатная статья	Non-Ferrous Metals. 2016. № 1.	C. 9- 15.	Yushina T.I., Shepeta E.D., Samatova L.A.,

					Alushkin I.V.
12	Технологии комплексной переработки упорных колчеданных руд и пиритных техногенных продуктов с извлечением цветных и редких металлов	Печатная статья	Цветные металлы. 2016. № 9 (885).	C. 16- 21.	Юшина Т.И., Бочаров В.А., Игнаткина В.А., Чантурия Е.Л.
13	Современное состояние и перспективы использования флотационных машин в России	Печатная статья	Горный журнал. 2016. № 3.	C. 61- 67.	Юшина Т.И., Петров И.М., Белоусова Е.Б.
14	Dry destoning coal based on XRT-seperationmethod	Печатный доклад	XVIII International Preparation Congress: 28 June – 01 July 2016, Saint-Peterburg, Russia		Yushina T.I., Alushkin I.V., Shchipchin V.B., Korneev I.G.
15	Флотация золотосодержащих руд цветных металлов с применением реагентов на основе ацетиленовых спиртов	Печатная статья	Цветные металлы. 2017. № 2.	C. 13- 19.	Юшина Т.И., Малышев О.А., Щелкунов С.А.
16	Исследование возможности получения железосодержащего продукта для технологии Ромелт из отходов производственной деятельности Камыш-Бурунского ГОКа	Печатная статья	Горный журнал. 2017. № 6.	C. 53- 57.	Юшина Т.И., Крылов И.О., Валавин В.С., Сыса П.А.
17	Исследование возможности получения железосодержащего продукта для технологии Ромелт из отходов производственной деятельности Камыш-	Печатная статья	Горный журнал. 2017. № 7.	C. 68-73.	Юшина Т.И., Крылов И.О., Валавин В.С., Сыса П.А.

	Бурунского ГОКа (часть II)				
18	Рациональная переработка пиритно-пирротинового природного и техногенного комплексного сырья цветных металлов	Печатная статья	Горный журнал. 2017. № 9. DOI 10.17580/gzh.2017.09. 14	C. 77- 84	Юшина Т.И., Бочаров В.А., Игнаткина В.А., Чантурия Е.Л.
19	Old iron-bearing waste treatment technology	Печатная статья	Eurasian mining. 2018. No. 1.	pp. 15 -20	Yushina T.I., I. M. Krylov V. S. Valavin W. W. Toan
20	Thermodynamic studies of thiol collectors sorption layer formation on the sphalerite surface under conditions of oxidation of sulphide sulphur to elemental state	Печатная статья	(2018) Tsvetnye Metally (4), c. 19-26	8	Goryachev B. E., Nikolaev A.A., Zay Ya, K., Morgun A.A.
21	Влияние ультразвуковых воздействий на эффективность выщелачивания, структурно- химические и морфологические свойства минеральных компонентов эвдиалитового концентрата	Печатная статья	Физико-технические проблемы разработки полезных ископаемых. 2018. № 2	C. 114- 120.	Е.Л. Чантурия, В.А. Чантурия, В.Г. Миненко, А.Л. Самусев, М.В. Рязанцева, Е.В. Копорули на
22	Оценка возможности использования электрохимической технологии подготовки вод и реагентов для повышения технологических показателей	Печатная статья	Черные металлы, № 5, 2018.	C. 6-9.	Е.Л. Чантурия, Е.С. Журавлева